
Add: HeBei ShengShi HongBang Cellulose Technology CO.,LTD.


CONTACT US
+86 13180486930
Rubber Powder is a cutting-edge recycled material obtained by grinding waste rubber into fine granules, widely used across polymer compounds, tire production, coatings, industrial gaskets, and more. Amidst rising sustainability standards and advanced recycling technologies, understanding rubber powder uses is vital for manufacturers, engineers, and buyers seeking cost-effective and high-performance solutions. This in-depth guide explores market trends, technical data, production processes, and Rubber powder-821 as a standout product backed by real-world applications and professional insights. 1. Industry Trends & Market Outlook (2024) Global Market Size (2024E): USD 2.4 Billion. Projected CAGR (2024-2029): 7.9% ( Grand View Research, 2024 ). Key Growth Drivers: Circular economy push, tire recycling mandates, cost reduction for rubber compounds, improved nitrile rubber powder resilience. End-use Verticals: Tires, industrial floorings, coatings, sealants, shoe soles, modified asphalt, and sports fields. Emerging Techs: Cryogenic/electro-mechanical grinding, nano-structured fine rubber powder , hybrid rubber/talc blends. 2. What is Rubber Powder? Technical Overview & Main Parameters Material Source & Types Derived from scrap tires, SBR, or nitrile rubber powder . Types include coarse (180-400μm), fine (40-100μm), or surface modified grades for rubber powder coating or anti-tack applications. Key Physical Properties Particle Size: 40–400 μm Moisture Content: <0.5% Purity: >98.7% (free from steel/textile) Bulk Density: 450–650 kg/m 3 International Standards ISO/TS 9273: Rubber recycling - Particle size spec. ANSI/ASTM D5603 for Recycled Rubber Quality REACH/FDA for coating & compound approvals Rubber Powder Parameters & Rubber Powder Uses Table Application Grade (Particle Size) Industry Value-Added (USD/ton) Technical Benefits Rubber powder uses in Tire Tread 80-120 mesh (≤175μm) Automotive 115-150 Good abrasion & consistency Rubber powder for Asphalt Modifier 40-80 mesh (450–180μm) Infrastructure 120-160 Enhanced elasticity, crack resistance Nitrile rubber powder for EPDM Compounds 80–200 mesh (175–75μm) Industrial/Automotive 140-175 Oil/solvent resistance, anti-tack Rubber powder coating Microfine (<63μm) Coating/Construction 155-190 UV, chemical resistance, tight film Talc powder for rubber blend Blend Rubber Compound 25-40 Improves processing, prevents sticking 3. Production Process: Manufacturing Flow of Rubber Powder Stepwise Manufacturing Diagram – Rubber Powder Uses Supply Chain 1. Raw Material Collection: Waste tires, SBR/EPDM scrap, NBR pieces (pre-inspected for contaminants) 2. Primary Shredding: Hydraulic crushers reduce size to 40–100mm chips. Magnetic separator removes steel wire. 3. Fine Grinding/Milling: Cryogenic or ambient mills crush chips to required mesh. Sifter ensures size uniformity (e.g., 80–200 mesh for fine rubber powder ). 4. Surface Modification (Optional): Rubber anti-tack powder, talc powder for rubber, or chemical additives blended in for processing optimization. 5. Packaging & QC: Graded powder packed in moistureproof bags. Samples sent for ISO/ASTM testing—particle size, purity, moisture, and ash content are validated. 6. Supply: Delivered globally for tire, coating, sealant, and downstream rubber powder uses . [▶ Watch Rubber Powder Plant Video (3:28)] 4. Featured Product: Rubber powder-821 Model: Rubber powder-821 | Official Product Page Particle Size: 90–150 μm (typically 100 mesh) Color: Black Purity: ≥99.2%, steel-free Moisture: ≤0.20% Bulk Density: 540–665 kg/m 3 Surface Modifier: Talc-powder blend option for improved anti-tack Compliance: ISO/TS 9273, ANSI D5603, RoHS, REACH Service Life: Up to 20 years in standard tire applications Applications: Tire compounds, rubberized asphalt, sealants, shoe soles, anti-tack powders, coatings Product Comparison Table: Rubber powder-821 vs Key Competitors Brand Product Mesh Size (μm) Purity (%) Moisture (%) ISO Certified Rubber Powder Price (USD/ton) HuaBang Rubber powder-821 90–150 ≥99.2 ≤0.2 Yes 135–160 Genan GENAN Fine Powder 63–180 ≥98.5 ≤0.5 Yes 140–170 Liberty Tire Micro-Rubber® 75–200 ≥97.6 ≤0.6 Yes 152–182 Entech UltraFine Powder 100–200 ≥98.2 ≤0.4 Yes 142–160 5. Technological Advantages: Why Choose Fine Rubber Powder? Fine rubber powder provides increased surface area for better adhesion in rubbers and coatings. Surface-modified powders enable customizable rubber powder uses including anti-tack, heat resistance, & chemical durability. Reduces virgin polymer consumption by 10–25% per formulation ( Elsevier Journal, 2021 ). Meets stringent RoHS, REACH, and ISO environmental compliance. Optimized for both hot melt and aqueous rubber powder coating processes. 6. Tailored Solutions: Customization & Support Customization Options Mesh Size: From 40 mesh (coarse) to 200 mesh (ultrafine) to control modulus, texture, and application fit. Surface Modification: Blending with rubber anti tack powder or talc powder for rubber for optimized processing. Packaging: 20kg, 25kg, 600kg super sacks depending on project size or automated production lines. On-site Technical Training: For major industrial clients installing new rubber powder production line equipment. Certified Manufacturer: HuaBang (22+ years rubber recycling expertise). Key Certifications: ISO 9001:2015, ISO/TS 9273, ANSI D5603, REACH-Compliant. Major Partners: Goodyear, Michelin, State Grid, LG Chemical. Reference: Major use in rubber powder uses for national expressway asphalt projects since 2018. 7. Application Case Studies & Industry Feedback Case 1: Rubber powder-821 in Tire Compounds ( Leading global tire OEM, 2023 ) Formula: 9% Rubber powder-821 + SBR + Silica + Antioxidant Achieved: 7% wear improvement; cost savings 12%/batch; passed ISO 28580 rolling resistance test Customer Quote: “High purity and uniformity of powder-821 allowed for seamless integration into our green tire recipes” ( Lead Material Engineer, APAC ). Case 2: Modified Asphalt in Municipal Infrastructure Project: State expressway (500km), completed 2022 Composition: 14% rubber powder-821 w/ talc powder for anti-tack Result: Rutting reduced by 31%, surface microcracking reduced, cost per km decreased by 10.4% Case 3: Rubber powder coating for Industrial Floors Usage: Blended microfine powder with latex emulsion, sprayed onto warehouse floors Benefits: Enhanced non-slip, chemical & UV stability, wears 2x slower than mineral-based coatings Standard: ASTM D4060 (Abrasion), ISO 8191 (Flame Spread) 8. Professional FAQ: Rubber Powder Terminology Explained Q1: What is the difference between fine rubber powder and standard rubber powder? A: Fine rubber powder (usually <100μm) has a larger surface area, providing superior dispersion and adhesion in polymers, coatings, and sealants. Standard powder (150–400μm) is mainly used for bulk fill or cushioning. Q2: How does nitrile rubber powder differ from SBR powder in applications? A: Nitrile rubber powder is oil/chemical resistant and often used in industrial gaskets and automotive sealants, while SBR powder is favored in tires, rubber flooring, and shoe soles for abrasion and cost benefits. Q3: What is the function of rubber anti tack powder ? A: Anti tack powders (talc/silica or specialty blends) prevent rubber sheets from sticking during mixing, storage, or transport, speeding up production lines and enhancing compound uniformity. Q4: Are there industry-recognized standards for rubber powder uses ? A: Yes. Key standards include ISO/TS 9273 (size and purity), ANSI/ASTM D5603 (recycled rubber), ASTM D412 (mechanical testing for rubber blends), and REACH/FDA when used in coatings or food-contact items. Q5: What are the key parameters to control when choosing rubber powder? A: Particle size (mesh), moisture content, steel fiber contamination, ash, surface chemistry (e.g., talc-coated), and international certifications. Q6: How does talc powder for rubber complement rubber powder? A: Talc acts as a processing aid, prevents sticking, and improves compound flow. In rubber powder, talc coating can further facilitate blending and anti-tack properties in extrusion or calendering. Q7: What support is available from the supplier for commissioning a rubber powder production line ? A: Suppliers such as HuaBang provide design consultation, equipment specification, on-site training, and post-installation technical support to ensure compliance with ISO/ASTM standards and maximum process efficiency. 9. Delivery, Warranty & Support Lead Time: Standard shipment within 7–15 business days after order confirmation. Warranty: 2-year product guarantee. Technical support provided throughout project lifecycle. Quality Control: Every batch tested for size, purity, and performance per ISO/ASTM. Support Channels: 24/7 technical hotline, rapid response (<1h for urgent issues), on-site consultation available for large-scale users. Customized supplier audits and documentation for major contracts in petrochemical, metallurgy, and water supply sectors. 10. FAQ: Frequently Asked Questions about Rubber Powder Uses Q1. Can rubber powder replace virgin rubber completely? A: It is generally used as a partial replacement (up to 35% in most compound recipes) to balance cost and mechanical performance. Q2. What is the most cost-efficient rubber powder price range in 2024? A: For fine mesh (80–120 mesh) rubber powder, USD 135–172/ton depending on purchase volume and surface modification. Q3. Which industries most benefit from rubber powder uses ? A: Tire manufacturing, asphalt modification, shoe sole compounding, industrial gaskets, and high-performance rubber powder coating . Q4. How long does Rubber powder-821 last in real applications? A: Up to 20 years in properly formulated tire treads; 6–12 years in external sealants or coatings under normal UV exposure. Q5. Any certifications required for export? A: Yes – ISO/TS 9273, REACH, MSDS, and local environmental certification are mandatory for key markets. 11. References & Further Reading “Recycled rubber powder has revolutionized the tire and elastomer sector, providing a circular solution with stable costs and eco-profile. Its adoption in polymer modification has seen a steady increase, driven by performance and sustainability mandates.” — Rubber News Recycling Forum, 2023 “Multi-functional rubber powder uses span from high-performance asphalt to advanced polymer coatings, validated by international standards and real-world case studies.” — Construction & Building Materials, Elsevier, 2021 “The maturity of rubber powder production line technology combined with ISO/TS based QC has made China and EU leaders in the recycled rubber market.” — Grand View Research, 2024 Explore detailed product data and technical support at: Rubber powder-821

Production

Experience

Acreage
Polyolefin fibers, an essential component in the textile and manufacturing industries, have significantly gained attention due to their versatile applications and superior qualities. These fibers, derived from polymers such as polypropylene and polyethylene, offer a unique combination of properties that cater to numerous industrial needs, enhancing both product performance and durability. One of the most significant advantages of polyolefin fibers is their exceptional resistance to moisture. This property makes them an ideal choice for outdoor applications, where exposure to environmental elements like rain and humidity can quickly degrade other materials. For instance, agricultural fabrics designed to protect crops from the elements heavily rely on polyolefin fibers due to their robust water-repellent characteristics, ensuring longevity and consistent performance across seasons. Moreover, the high tensile strength of polyolefin fibers contributes importantly to their value in various industries. Their ability to withstand considerable stress without breaking or deforming makes them suitable for manufacturing high-strength ropes, fishing nets, and even geotextiles used in construction projects. This inherent strength not only extends the lifespan of the products made from these fibers but also enhances their reliability in critical applications, where failure is not an option. A prominent feature of polyolefin fibers is their inherent resistance to chemical attacks. This characteristic is particularly beneficial in environments where exposure to harsh chemicals or solvents is a concern, such as in industrial filtration systems or packaging materials. Products made from polyolefin fibers do not easily degrade when in contact with chemicals, ensuring both product integrity and safety over time. In the arena of sustainability, polyolefin fibers present a commendable profile. They are fully recyclable and contribute less to the overall carbon footprint compared to some other synthetic fibers. Their production process, largely driven by advances in polymer technology, has become more energy-efficient, allowing manufacturers to produce these fibers with reduced environmental impact. This aspect of sustainability positions polyolefin fibers favorably among environmentally conscious businesses aiming to incorporate more eco-friendly materials into their product lines. polyolefin fiber The light-weight nature of polyolefin fibers is another enticing benefit, leading to two major advantages—ease of handling and reduced transportation costs. Their low density results in lighter end products, which is particularly beneficial for applications in the automotive and aerospace industries, where weight reduction translates to improved fuel efficiency and performance. Polyolefin fibers thus contribute to overall cost savings , benefiting both manufacturers and end consumers. While the advantages are clear, incorporating polyolefin fibers into applications requires careful consideration of certain technical properties. Polyolefin fibers have a relatively low melting point compared to other synthetic fibers, which can be a limiting factor in high-temperature applications. However, this limitation is often addressed in innovative ways by blending polyolefin fibers with other materials or using them in environments where their low thermal resistance is not an issue. The expertise and authority of polyolefin fiber production have been greatly advanced by leading companies and research institutions globally. Their focus remains on refining the production processes and enhancing the fiber’s properties to meet the ever-evolving demands of the market. Extensive research and development activities ensure these fibers remain at the forefront of innovation, maintaining their status as a reliable and versatile material choice. Trustworthiness in the field of polyolefin fibers is further reinforced by strict compliance with international standards and certifications, which oversee the quality and environmental impact of these materials. Reputable manufacturers provide comprehensive data and transparency about their products, allowing consumers to make informed decisions based on verified performance metrics. In conclusion, polyolefin fibers represent a remarkable blend of performance, durability, and sustainability, making them indispensable across a variety of industrial sectors. Their distinctive properties provide tangible benefits, from extending product life to reducing environmental impacts, ensuring that polyolefin fibers will continue to be a material of choice for innovative solutions well into the future.
In the ever-evolving world of construction materials, HPMC cellulose has emerged as an essential additive that enhances the performance and quality of various building products. Known for its multifunctionality, HPMC cellulose plays a critical role in improving workability, water retention, and adhesion in products like cement-based mortars, tile adhesives, wall putty, and plaster. Derived from natural cellulose, HPMC cellulose (Hydroxypropyl Methylcellulose) is modified through etherification to offer superior performance characteristics. It is non-ionic and water-soluble, making it an ideal component for use in cement and gypsum systems. By ensuring uniform water distribution and extended open time, HPMC cellulose enhances application efficiency and surface finish, particularly in hot or dry conditions. One of the standout attributes of HPMC cellulose is its ability to enhance the cohesion and viscosity of mortars without altering the composition of the main binder. This not only reduces material waste but also improves the durability of the final construction. The increased workability allows workers to achieve smoother finishes with less effort, ultimately speeding up construction timelines. Additionally, HPMC cellulose contributes to anti-sagging properties in vertical applications, allowing heavier mortar layers to be applied without the risk of slippage. This makes it an indispensable ingredient in modern construction practices where performance and quality are paramount. The Multifunctional Role of HPMC Hydroxypropyl Methylcellulose in Dry Mix Mortars When it comes to dry mix mortar formulations, HPMC hydroxypropyl methylcellulose is a cornerstone component due to its excellent water retention capabilities and improved open time. In tile adhesives, self-leveling compounds, and external thermal insulation systems (ETICS), HPMC hydroxypropyl methylcellulose plays a vital role in enhancing the performance and lifespan of the product. Water retention is particularly crucial in cementitious products because it ensures that the hydration of cement continues effectively, even under hot and windy conditions. This not only prevents cracking but also promotes better bonding between surfaces. HPMC hydroxypropyl methylcellulose retains the necessary moisture content, ensuring optimal curing of the materials. In addition, HPMC hydroxypropyl methylcellulose improves slip resistance, which is essential when installing heavy tiles on vertical walls. It reduces the tendency of the tile to slide before setting, resulting in a more secure and precise installation. In leveling compounds, this additive helps control flow properties, ensuring even spreading and minimizing defects. HPMC hydroxypropyl methylcellulose also imparts workability to mortars by acting as a lubricant, reducing friction and allowing smooth application. Its thickening effect ensures uniform consistency and prevents segregation of components, which is especially beneficial in automated mixing and application systems. Moreover, the thermal insulation capability of ETICS systems benefits greatly from the inclusion of HPMC hydroxypropyl methylcellulose , which provides strong adhesion between insulation boards and substrates, along with crack resistance and longevity. Hydroxy Methyl Propyl Cellulose for Superior Tile Adhesives and Wall Putty Hydroxy methyl propyl cellulose is especially valued in tile adhesives and wall putty formulations for its unique blend of viscosity control and water retention. These characteristics are indispensable in ensuring the adhesive’s strength and durability. In wall putties, hydroxy methyl propyl cellulose enhances surface smoothness and ensures a longer working time, giving professionals more flexibility during application. Its water retention property allows the cement to hydrate completely, which minimizes shrinkage and cracking. Tile adhesives, which require high strength and precise application, benefit from the use of hydroxy methyl propyl cellulose due to its anti-sagging properties and enhanced adhesion. It ensures that tiles remain in place until the adhesive sets, even under the influence of gravity on vertical surfaces. Another significant benefit is its role in open time extension. Hydroxy methyl propyl cellulose allows tile installers to adjust or realign tiles without compromising adhesion. This becomes especially critical in large-format tile installations where precision is key. Its thickening ability further improves the thixotropic behavior of adhesives, providing shear thinning properties that ease troweling while maintaining body when applied. These attributes make hydroxy methyl propyl cellulose a preferred additive in high-performance construction applications. What is HPMC and How It Revolutionizes Cement-Based Products What is HPMC and why has it become such an integral part of cement-based products? In the simplest terms, HPMC (Hydroxypropyl Methylcellulose) is a non-ionic cellulose ether derived from natural sources like cotton or wood pulp. It is chemically modified to be water-soluble and deliver enhanced performance in building applications. What is HPMC used for? In construction, it serves as a thickener, binder, film-former, and water-retention agent. When incorporated into cement and gypsum formulations, it transforms their behavior — improving workability, preventing premature drying, and enhancing surface finish. One of the remarkable things about what is HPMC is its ability to provide consistent performance across a range of temperatures and substrates. Whether applied in cold, humid environments or hot and arid conditions, HPMC maintains its efficacy, ensuring reliability throughout the construction process. Additionally, what is HPMC used for in grouts and renders? In these systems, it prevents water loss and promotes a smooth, crack-free finish. It ensures the fine balance between flowability and cohesion, which is crucial for precision applications like tile joints and decorative plasters. Its inert nature and compatibility with other construction chemicals further increase its versatility. Contractors and manufacturers alike depend on what is HPMC to achieve durable, aesthetically pleasing, and structurally sound results. Innovations in Modern Construction with HPMC Cellulose Additives The use of HPMC cellulose additives has driven numerous innovations in modern construction. Beyond traditional tile adhesives and wall putty, HPMC cellulose is now integrated into self-leveling underlayments, exterior renders, gypsum plasters, and cementitious waterproofing membranes. Self-leveling compounds rely heavily on the precise rheological control provided by HPMC cellulose . It stabilizes the flow without allowing sedimentation of aggregates, ensuring a flat and even floor surface after curing. In gypsum plasters, the inclusion of HPMC cellulose improves spreadability, adhesion, and anti-cracking properties. It enables a smooth, white finish and prolongs open time, which is especially useful for decorative applications. Cementitious waterproofing systems benefit from HPMC cellulose by gaining improved cohesion, flexibility, and reduced permeability. It enhances bonding to substrates, minimizes cracking under stress, and allows for long-term resistance against water ingress. Even in prefabricated dry mortar mixes, HPMC cellulose ensures homogeneity, shelf stability, and ease of redispersion when mixed with water. This leads to reduced site labor, lower error rates, and better control over final product quality. Ultimately, the integration of HPMC cellulose into various building systems showcases how innovation and chemistry can together drive performance, efficiency, and sustainability in construction. hydroxypropyl methylcellulose FAQs What is the main function of HPMC in cement-based applications? The primary function of HPMC in cement-based materials is to retain water, ensuring the complete hydration of cement and improving the working time. It also enhances workability, adhesion, and surface smoothness, making the application process more efficient and the end results more durable. How does HPMC hydroxypropyl methylcellulose improve tile adhesives? HPMC hydroxypropyl methylcellulose improves tile adhesives by increasing water retention, enhancing open time, and providing anti-slip properties. This allows installers to work more accurately and ensures strong, lasting bonds even on vertical surfaces or during high temperatures. Can hydroxy methyl propyl cellulose prevent cracking in plaster or mortar? Yes, hydroxy methyl propyl cellulose significantly reduces the risk of shrinkage cracks by maintaining adequate moisture during curing. Its binding and film-forming properties also contribute to a uniform application, reducing stress points that lead to cracking. Is HPMC cellulose compatible with all types of cement and gypsum? HPMC cellulose is widely compatible with various cement types (e.g., OPC, white cement) and gypsum formulations. It does not interfere chemically with binders or pigments and can be used alongside other admixtures like dispersing agents or retarders. What makes HPMC an environmentally friendly choice for construction? HPMC is derived from natural cellulose, making it biodegradable and environmentally safe. Its use in improving durability and reducing material waste aligns with green construction practices. Additionally, it allows better energy efficiency in manufacturing due to faster processing and reduced curing times.
200000 Viscosities
Excellent product
We can produce pure products up to 200,000 viscosities
40000 tons
High yield
We don’t stop production all year round, and the annual output can reach 40,000 tons
24 hours
Quality service
We provide 24-hours online reception service, welcome to consult at any time
———— Inquiry Form
Schedule A services
Oct . 25, 2025
Oct . 25, 2025
Oct . 25, 2025